If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+9x=197
We move all terms to the left:
x^2+9x-(197)=0
a = 1; b = 9; c = -197;
Δ = b2-4ac
Δ = 92-4·1·(-197)
Δ = 869
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-\sqrt{869}}{2*1}=\frac{-9-\sqrt{869}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+\sqrt{869}}{2*1}=\frac{-9+\sqrt{869}}{2} $
| x+5+90+2x+10=180 | | 0.4(x+0.6)=12 | | 13x-6=-5x | | 5x-14+90+4x+5=180 | | 2p+22=84 | | 15=z/3+13 | | 25=-5h | | 24=2x–12 | | f-92/2=4 | | .75x=17 | | 14x-30+16x-30=180 | | -78=6c | | 10x^-2.5=80 | | m^2+12m=20 | | 10x-10-10+8x+28+28=180 | | 2(P-6)=9(2p+7) | | q-51/4=8 | | 8(s-81)=80 | | (X+12)(x-12)=25 | | 8(s-81=80 | | 12t^2-144t-308=0 | | 2x+x/7=180 | | 0.306=1/2(10)t^2 | | -3x^2-5=55 | | 2y+17=123 | | 13=s/2+10 | | (3+2x)-4=9 | | 5-5b=5+2b | | 41=-3x+17 | | 4t(t^2-18t-77)=0 | | 22/3x=311/15 | | -234=-3(8+7x) |